Optical-carried microwave interferometry (OCMI) has attracted increasing attention in recent years, as it combines the ease of phase extraction and manipulation of microwave techniques with the low-loss transfer of optical fibers. Conventional OCMI implementations typically employ broadband light sources and coherent photodetection, which inevitably suffer from dispersion, polarization fading, and phase drift, severely limiting the achievable sensing distance. In this work, we proposed an optimized OCMI architecture that adopts incoherent photodetection combined with electric-domain microwave interferometry. Comprehensive theoretical analysis and systematic experiments demonstrate that the proposed system enables robust, dynamic, and long-haul fiber transfer delay (FTD) measurements, no less than in 15 km length, with improved resolution and stability. It provides new insight for building long-haul FTD sensor networks.
Loading....